Construction of a Borole Ligand from Coordinated Diene and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ via Successive $\mathbf{C}-\mathbf{H}$ Activation Steps: A Case of Catalyst Self-Activation

Gerardo Jiménez Pindado, Simon J. Lancaster, Mark Thornton-Pett, and Manfred Bochmann*

School of Chemistry, University of Leeds Leeds LS2 9JT, UK

Received March 31, 1998

Complexes of the borole dianion $\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BR}\right]^{2-}$ are usually made via dehydrogenation of 2,5 -dihydro- 1 H -boroles with various transition metal compounds ${ }^{1}$ or by the reaction of the preformed borole dianion with metal halides. ${ }^{2}$ Some early transition metal derivatives have recently attracted attention in the context of metallocene-catalyzed alkene polymerizations. ${ }^{3}$ We now find that borole complexes are formed from zirconium 1,3-diene complexes and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ by successive $\mathrm{C}-\mathrm{H}$ activation steps within the metal coordination sphere. Unusually, tris(pentafluorophenyl)borane, widely used as an activator of metallocene polymerization catalysts because of its resistance to aryl transfer reactions, ${ }^{4,5}$ acts as the boron source.

As we have shown recently, ${ }^{6}$ the zwitterionic 14 -electron bis(allyl)zirconium complexes $\mathbf{1}$ are readily accessible from $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}-$ $\left(\eta^{3}\right.$-allyl $)\left(\eta^{4}\right.$-1,3-diene) $\left[\mathrm{Cp}^{\prime \prime}=1,3-\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]\right.$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and are active ethene polymerization catalysts; their activities and lifetimes are however limited by their thermal stability, which depends on the degree of substitution of the diene-derived allyl ligand. Thus $\mathbf{1 a}$ is readily converted to $\mathbf{2 a}$ via activation of one of the $\mathrm{C}-\mathrm{H}$ bonds of the $\mathrm{B}-\mathrm{CH}_{2}$ moiety and elimination of butene even at $-60^{\circ} \mathrm{C}$, while the analogous reaction of $\mathbf{1 b}$
(1) (a) Herberich, G. E.; Hessner, B.; Boveleth, W.; Lüthe, H.; Saive, R.; Zelenka, L. Angew. Chem., Int. Ed. Engl. 1983, 22, 1024. (b) Herberich, G. E.; Negele, M.; Ohst, H. Chem. Ber. 1991, 124, 25. (c) Herberich, G. E.; Carstensen, T.; Klaff, N.; Neuschütz, M. Chem. Ber. 1992, 125, 1801. (d) Enders, M.; Pritzkow, H.; Siebert, W. Chem. Ber. 1992, 125, 1981. (e) Herberich, G. E.; Carstensen, T.; Englert, U. Chem. Ber. 1992, 125, 2351. (f) Braunstein, P.; Englert, U.; Herberich, G. E.; Neuschütz, M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1010. (g) Herberich, G. E.; Carstensen, T.; Koffer, D. P. J.; Klaff, N.; Boese, R.; Hylakryspin, I.; Gleiter, R.; Stephan, M.; Meth, H.; Zenneck, U. Organometallics 1994, 13, 619. (h) Herberich, G. E.; Eckenrath, H. J.; Englert, U. Organometallics 1997, 16, 4292. (i) Herberich, G. E.; Eckenrath, H. J.; Englert, U. Organometallics 1997, 16, 4800.
(2) (a) Herberich, G. E.; Hostalek, M.; Laven, R.; Boese, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 317. (b) Herberich, G. E.; Englert, U.; Hostalek, M.; Laven, R. Chem. Ber. 1991, 124, 17. (c) Herberich, G. E.; Eigendorf, U.; Englert, U. Chem. Ber. 1993, 126, 1397. (d) Herberich, G. E.; Marx, H. W.; Wagner, T. Chem. Ber. 1994, 127, 2135. (e) Herberich, G. E.; Wagner, T.; Marx, H. W. J. Organomet. Chem. 1995, 502, 67.
(3) (a) Quan, R. W.; Bazan, G. C.; Kiely, A. F.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1994, 116, 4489. (b) Pastor, A.; Kiely, A. F.; Henling, L. M.; Day, M. W.; Bercaw, J. E. J. Organomet. Chem. 1997, 528, 65. (c) Bazan, G. C.; Donnelly, S. J.; Rodriguez, G. J. Am. Chem. Soc. 1995, 117, 2671. (d) Bazan, G. C.; Rodriguez, G. Polyhedron 1995, 14, 93 . For related zirconium boratabenzene complexes see: Bazan, G. C.; Rodriguez, G. J. Am. Chem. Soc. 1996, 118, 2291. Rogers, J. S.; Bazan, G. C.; Sperry, C. K. J. Am. Chem. Soc. 1997, 119, 9305.
(4) Reviews: (a) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. (b) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143.
(5) (a) Siedle, A. R.; Newmark, R. A. J. Organomet. Chem. 1995, 497, 119. (b) Horton, A. D. Organometallics 1996, 15, 2675. (c) Beck, S.; Prosenc, M. H.; Brintzinger, H. H.; Goretzki, R.; Herfert, N.; Fink, G. J. Mol. Catal. 1996, 111, 67. (d) Baumann, R.; Davis, W. M.; Schrock, R. R. J. Am. Chem. Soc. 1997, 119, 3830. (e) Sun, Y.; Spence, R. E. v. H.; Piers, W. E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. 1997, 119, 5132. (f) Sun, Y.; Piers, W. E.; Rettig, S. J. Chem. Commun. 1998, 127.
(6) (a) Jiménez Pindado, G.; Thornton-Pett, M.; Bouwkamp, M.; Meetsma, A.; Hessen, B.; Bochmann, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2358 (b) Jiménez Pindado, G.; Thornton-Pett, M.; Bochmann, M. J. Chem. Soc., Dalton Trans. 1997, 3115. For the synthesis of the related cation [Cp*Hf$\left.(\text { allyl })_{2}\right]^{+}$see: Hessen, B.; van der Heijden, H. J. Organomet. Chem. 1997, 534, 237.

Scheme 1

requires higher temperatures. ${ }^{6 b}$ The formation of $\mathbf{2}$ is associated with catalyst deactivation.

However, we find that compounds of type 2 are not the end products of the reaction sequence. Monitoring the reaction by NMR in toluene- d_{δ} over a period of two weeks indicated the formation of pentafluorobenzene together with new products $\mathbf{3 a}$ and $\mathbf{3 b}$ which contain the new pentafluorophenyl-substituted borole ligands $\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{BC}_{6} \mathrm{~F}_{5}\right]^{2-}$ and $\left[3-\mathrm{MeC}_{4} \mathrm{H}_{3} \mathrm{BC}_{6} \mathrm{~F}_{5}\right]^{2-}$, respectively (Scheme 1). Compound 3a can be made directly from $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)^{6 \mathrm{~b}}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ without the isolation of any intermediates and is separated from side-products by the addition of diethyl ether to give $4 \mathbf{a}$ as a red solid. The decomposition of red $\mathbf{2 b}$ in diethyl ether proceeds more cleanly at ambient temperature to give a purple solution from which blue microcrystals of $\mathbf{4 b}$ precipitate. Overall, the zirconium mediated formation of pentafluorophenylborole from a 1,3-diene corresponds to the reaction:

In toluene solution at $25{ }^{\circ} \mathrm{C}$ the chiral complexes 4 are fluxional, with rapid interchange of the ether ligand. In the case of $\mathbf{4 b}$ the presence of the 3-methyl substituent on the borole ligand leads to two diastereomers, in a ratio of 1:0.6 at $-50^{\circ} \mathrm{C}$. No such fluxionality is observed for the ether-free complexes $\mathbf{3}$ over the temperature range from 20 to $-90^{\circ} \mathrm{C}$.

At ambient temperature the ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{4 a}$ and $\mathbf{4 b}$ show two different $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The zirconium $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligands show hindered rotation, and even at room temperature the $o-\mathrm{F}$ atoms are inequivalent. At $-40{ }^{\circ} \mathrm{C}$ the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ groups show characteristic o-F high-field chemical shifts (e.g. 4a: -106.9 and $-119.2) .{ }^{6}$ The rotation of the $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ group is more facile but is slow below $-60^{\circ} \mathrm{C}$. In the ether-free complexes $\mathbf{3}$ the lowtemperature limit for $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ rotation is reached only on cooling to $-90{ }^{\circ} \mathrm{C}$. For $\mathbf{3 b}$ the two ${ }^{19} \mathrm{~F}$ signals are found at $\delta-118.1$ and -148.9 , the latter being most probably indicative of $\mathrm{Zr} \cdots$ o-F coordination..$^{6 a, 7}$ The ${ }^{11}$ B NMR spectra show broad peaks at $\delta 44(\mathbf{3 b}), 36(4 \mathbf{a})$, and $38(\mathbf{4 b})$, respectively, which are high-

[^0]

Figure 1. Molecular structure of $\mathbf{4 b}$, showing the atomic numbering scheme. Ellipsoids are drawn at 40% probability. Selected interatomic distances (\AA) and angles (deg): $\mathrm{Zr}-\mathrm{O}(1) 2.266(3) ; \mathrm{Zr}-\mathrm{C}(21) 2.351(5)$; $\mathrm{Zr}-\mathrm{B}(1) 2.662(6) ; \mathrm{Zr}-\mathrm{C}(2) 2.488(5) ; \mathrm{Zr}-\mathrm{C}(3) 2.396(4) ; \mathrm{Zr}-\mathrm{C}(4)$ 2.430(4); $\mathrm{Zr}-\mathrm{C}(5) \quad 2.507(5) ; \mathrm{O}-\mathrm{Zr}-\mathrm{C}(21) \quad 105.4(2) ; \mathrm{C}(2)-\mathrm{B}-\mathrm{C}(5)$ 103.0(5); $\mathrm{C}(2)-\mathrm{B}-\mathrm{C}(11) 127.3(5) ; \mathrm{C}(5)-\mathrm{B}-\mathrm{C}(11) 129.6(5)$.
field shifted by ca. $10-20 \mathrm{ppm}$ compared to complexes of $\mathrm{C}_{6} \mathrm{H}_{5}$ substituted boroles ${ }^{1 a, c, e, g-i}$ and reflect the electron-withdrawing nature of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent.

The structure of $\mathbf{4 a}$ was confirmed by X-ray diffraction (Figure 1). ${ }^{8}$ The compound adopts a conformation in which the $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$, the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$, and one of the SiMe_{3} substituents are almost eclipsed, with one of the SiMe_{3} methyl groups resting above the plane of the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand. The $\mathrm{Zr}-\mathrm{C}$ distances to the $\mathrm{C}_{4} \mathrm{H}_{4}$ $\mathrm{BC}_{6} \mathrm{~F}_{5}$ ligand are short (average $\mathrm{Zr}-\mathrm{C} 2.455 \AA$) and indicate strong bonding to borole, compared to the bonding of the cyclopentadienyl group (average $\mathrm{Zr}-\mathrm{C} 2.554 \mathrm{~A}$). Despite the coplanar arrangements of the $\mathrm{C}_{4} \mathrm{~B}$ and the $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ rings the $\mathrm{B}-\mathrm{C}(21)$ distance of $1.595(8) \AA$ is typical of a $\mathrm{B}-\mathrm{C}$ single bond and gives no indication of a π-bonding contribution, ${ }^{6 a, 9}$ unlike the situation in related aminoborole complexes. ${ }^{3}$

The conversion of $\mathbf{1}$ into $\mathbf{2}$ is a catalyst deactivation process. ${ }^{6 b, 10}$ Standard tests for ethene polymerization ($1 \mathrm{bar}, 5 \mathrm{~min}$) of toluene solutions of 2 in the presence or absence of trimethylaluminum showed no catalytic activity. However, after an induction period of ca. 10 min at $60^{\circ} \mathrm{C}$ under 6 bar of ethene pressure in the presence of AlMe_{3} the onset of some polymerization is noted, and the activity increases slowly with time. ${ }^{11}$ This behavior is indicative of the slow buildup of a catalytically active species.

[^1]Table 1. Ethene Polymerizations ${ }^{a}$

catalyst precursor	$\begin{gathered} \mathrm{Al} \\ \text { alkyl } \end{gathered}$	Al/			polym			$M_{\text {w }} /$	
		Zr $(\mu \mathrm{mol})$	Zr ratio	temp $\left({ }^{\circ} \mathrm{C}\right)$	time (min)	yield (g)	productivity ${ }^{b}$		
4b	AlMe_{3}	30.5	26	60	50	23.1	151		
4b	AlMe_{3}	30.5	26	60	110	33.6	110	49700	6.0
4b	AlMe_{3}	31.5	15	60	50	17.5	110	53600	5.6
$\mathrm{ZrCp}_{2} \mathrm{Cl}_{2}$	AlMe_{3}	57	30	60		traces			
4b	MAO	39	37	60	50	22	113		d
4b	MAO	39	37	60	110	30	70	100700	
4b	MAO	31	500	60	110	42	123	225000	

${ }^{a}$ Polymerization conditions: A 1 L stainless steel Büchi autoclave was charged with 200 mL of toluene. The required amount of aluminum alkyl was injected under 6 bar of ethene presure and equilibrated at 60 ${ }^{\circ} \mathrm{C}$, followed by the injection of the Zr complex. Polymerizations were terminated by injecting 20 mL of methanol. ${ }^{b}$ Productivity is in $10^{3} \mathrm{~g}$ $\mathrm{PE}(\mathrm{mol} \mathrm{Zr})^{-1} \mathrm{~h}^{-1} \mathrm{bar}^{-1}$, based on isolated polymer yields. ${ }^{c}$ By GPC relative to polystyrene standards. ${ }^{d}$ Not determined.

In this case the reaction is explained by Scheme 1, i.e., the conversion of the inactive half-sandwich complex 2 into a 14electron metallocene derivative of type 3. Compound $\mathbf{3}$ is of course isoelectronic with the well-known active species in metallocene catalysts, $\left[\mathrm{Cp}_{2} \mathrm{ZrR}\right]^{+}$. We are therefore observing the unusual situation where a catalyst deactivation product undergoes a controlled further rearrangement into a species that on contact with AlMe_{3} gives an active metallocene complex, a case of catalyst "self-reactivation".

Solutions of isolated $\mathbf{4 b}$ in toluene did not show catalytic activity, no doubt since ethene insertion into the stable $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ bond is unfavorable. However, addition of AlMe_{3} to $\mathbf{4 b}$ at $\mathrm{Al} /$ Zr ratios of $15: 1$ to $30: 1$ gave immediate polymerization without an induction period. ${ }^{11}$ NMR studies confirm that under these conditions $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5} / \mathrm{CH}_{3}$ exchange takes place, to give a catalytically active $\mathrm{Zr}-\mathrm{Me}$ species. ${ }^{12}$ It is noteworthy that under identical conditions $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ is inactive (Table 1). The activities obtained with methylalumoxane (MAO) closely resemble those achieved with AlMe_{3} alone; there is no significant productivity increase on raising the $\mathrm{Al} / \mathrm{Zr}$ ratio in the MAO system from $37: 1$ to 500 : 1.

The results illustrate the importance of $\mathrm{C}-\mathrm{H}$ activation pathways not only in the deactivation of metallocene-based polymerization catalysts but also as a novel route to new catalyst systems, the formation of which could not have been anticipated.

Acknowledgment. This research was supported by the British Engineering and Physical Sciences Research Council. G.J.P. thanks the Ministry for Education and Science of Spain for a research fellowship.

Supporting Information Available: Experimental details of synthetic procedures, X-ray structure determination, and crystal data of 4b (14 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA981069Y

[^2]
[^0]: (7) (a) Temme, B.; Erker, G.; Karl, J.; Luftmann, H.; Fröhlich, R.; Kotila, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1755. (b) Karl, J.; Erker, G.; Fröhlich, R. J. Organomet. Chem. 1997, 535, 59. (c) Temme, B.; Karl, J.; Erker, G. Chem. Eur. J. 1996, 2, 919. (d) Karl, J.; Erker, G.; Fröhlich, R. J. Am. Chem. Soc. 1997, 119, 11165. (e) Karl, J.; Erker, G.; Fröhlich, R.; Zippel, F.; Bickelhaupt, F.; Schreuder Goedheijt, M.; Akkerman, O. S.; Binger, P.; Stannek, J. Angew. Chem. 1997, 109, 2914.

[^1]: (8) Crystal data: $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{BF}_{10} \mathrm{OSi}_{2} \mathrm{Zr}$; space group $P 2_{1} / n$; monoclinic; $a=$ $11.9588(14) \AA ; b=18.750(5) \AA ; c=15.2003(11) \AA ; \beta=106.125(7)^{\circ}, \gamma=$ 90° at 160 K .; volume $=3274.2(9) \AA^{3} ; Z=4$; final R indices $[I>2 \sigma(I)] R_{1}$ $=0.0416, w R_{2}=0.0694$ for 4595 absorption-corrected reflections.
 (9) Herberich, G. E.; Fischer, A. Organometallics 1996, 15, 58.
 (10) (a) Gomez, R.; Green, M. L. H.; Haggit, J. L. J. Chem. Soc., Dalton Trans. 1996, 939. (b) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015. (c) Scollard, J. D.; McConville, D. H.; Rettig, S. J. Organometallics 1997, 16, 1810. (d) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 842. (e) Dioumaev, V. K.; Harrod, J. F. Organometallics 1997, 16, 2798. For aryl transfer reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with Fe, Mo, and W complexes see: Chernega, A. N.; Graham, A. J.; Green, M. L. H.; Haggit, J.; Lloyd, J.; Mehnert, C. P.; Metzler, N.; Souter, J. J. Chem. Soc., Dalton Trans. 1997, 2293.

[^2]: (11) The activity profile was monitored over a 60 min period. See Supporting Information for gas comsumpton vs time diagrams.
 (12) (a) On adding AlMe_{3} to a solution of $\mathbf{4 b}$ in toluene- d_{8} at $25^{\circ} \mathrm{C}$ the color changed from brown to red. The NMR spectra showed a complex product mixture containing $\mathrm{AlMe}_{3}, \mathrm{AlMe}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{AlMe}_{2} \mathrm{C}_{6} \mathrm{~F}_{5} \cdot \mathrm{Et}_{2} \mathrm{O}$, as well as two resonances for $\mathrm{Zr}-\mathrm{Me}$ signals tentatively assigned to $\mathrm{Cp}^{\prime \prime}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{MeBC}_{6} \mathrm{~F}_{5}\right) \mathrm{Zr}(\mu$ $\mathrm{Me})_{2} \mathrm{AlMe}_{2}$, in analogy to the known catalyst $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mu-\mathrm{Me})_{2} \mathrm{AlMe}_{2}\right]^{+} .{ }^{12 \mathrm{bb}}$ See Supporting Information. (b) Bochmann, M.; Lancaster, S. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1634.

